Vascular endothelium as a regulator of granulopoiesis: production of colony-stimulating activity by cultured human endothelial cells.

نویسندگان

  • P J Quesenberry
  • M A Gimbrone
چکیده

Colony-stimulating activity is a regulatory factor(s) that promotes differentiation of hemopoietic stem cells to mature granulocytes and macrophages; in man it has been found that blood monocytes, lymphocytes, and tissue macrophages produce it. In an effort to identify other potenitally physiologic tissue sources of colony-stimulating activity, we have studied the capacity of primary cultures of human vascular endothelial cells to produce colony-stimulating activity. Medium conditioned by incubation with endothelial cultures contained activity that promoted granulocyte-macrophage colony formation of nonadherent human and murine marrow cells. Exposure of endothelial cultures to 0.1-5.0 microgram/ml S. typhosa endotoxin for 6-72 hr enhanced colony-stimulating activity production. Similarly, incubation of endothelial cells with lysates of human blood granulocytes, or cocultivation with intact granulocytes, resulted in increased colony-stimulating activity levels. In 7-14 day cultures, freshly isolated endothelial cells, incorporated into agar underlayers, consistently stimulated more colony formation by nonadherent human marrow cells than comparable numbers of blood monocytes. These data indicate that: (1) cultured human endothelial cells are a potent source of colony-stimulating activity; (2) they respond to endotoxin and granulocytes and their contents by producing increased amounts of CSA; and (3) they produce morea colony-stimulating activity, than human blood monocytes under standardized conditions in vitro. These observations suggest that the vascular endothelium may play a role in the physiologic regulation of granulopoiesis.

منابع مشابه

A monokine regulates colony-stimulating activity production by vascular endothelial cells.

Human umbilical vein endothelial cells were cultured in supernatants of peripheral blood monocytes that had been cultured for 3 days with and without lactoferrin. Colony-stimulating activity (CSA) was measured in supernatants of the endothelial cell cultures and appropriate control cultures using normal, T-lymphocyte-depleted, phagocyte-depleted, low-density bone marrow cells in colony growth (...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Monokine Regulates Colony - Stimulating Activity Production by Vascular Endothelial Cells

Human umbilical vein endothelial cells were cultured in supernatants of peripheral blood monocytes that had been cultured for 3 days with and without lactoferrin. Colonystimulating activity (CSA) was measured in supernatants of the endothelial cell cultures and appropriate control cultures using normal. T-Iymphocyte-depleted. phagocytedepleted, low-density bone marrow cells in colony growth (CF...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Nitric oxide and the bioactivities

Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Blood

دوره 56 6  شماره 

صفحات  -

تاریخ انتشار 1980